Lebesgue measure of escaping sets of entire functions of completely regular growth
نویسندگان
چکیده
We give conditions ensuring that the Julia set and the escaping set of an entire function of completely regular growth have positive Lebesgue measure. The essential hypotheses are that the indicator is positive except perhaps at isolated points and that most zeros are located in neighborhoods of finitely many rays. We apply the result to solutions of linear differential equations.
منابع مشابه
Entire Functions with Julia Sets of Positive Measure
Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy-Carleman-Ahlfors theorem implies that if the set of all z for which |f(z)| > R has N components for some R > 0, then the order of f is at least N/2. More precisely, we have log logM(r, f) ≥ 1 2 N log r − O(1), where M(r, f) denotes the maximum modulus of f . We show that if f doe...
متن کاملThe Sugeno fuzzy integral of concave functions
The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....
متن کاملOn characterizations of weakly $e$-irresolute functions
The aim of this paper is to introduce and obtain some characterizations of weakly $e$-irresolute functions by means of $e$-open sets defined by Ekici [6]. Also, we look into further properties relationships between weak $e$-irresoluteness and separation axioms and completely $e$-closed graphs.
متن کاملFurther growth of iterated entire functions in terms of its maximum term
In this article we consider relative iteration of entire functions and studycomparative growth of the maximum term of iterated entire functions withthat of the maximum term of the related functions.
متن کاملHausdorff Dimensions of Escaping Sets of Transcendental Entire Functions
Let f and g be transcendental entire functions, each with a bounded set of singular values, and suppose that g ◦ φ = ψ ◦ f , where φ, ψ : C → C are affine. We show that the escaping sets of f and g have the same Hausdorff dimension. Using a result of the second author, we deduce that there exists a family of transcendental entire functions for which the escaping set has Hausdorff dimension equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 94 شماره
صفحات -
تاریخ انتشار 2016